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Introduction
The Omnibus F-Test

o Consider again a simple 1-way Analysis of Variance setup
with a = 4 groups.

@ One statistical question is “Are all the group means the
same?”

e That question is addressed with the omnibus (or overall)
F'-test.

o This F-test addresses the question directly by testing the
hypothesis

Ho: p1=p2=p3=pu (1)

o If the F-test rejects this null hypothesis, you can conclude
that it is highly likely some means are different.
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Alternative Hypotheses

@ The omnibus hypothesis is a good starting place.

o However, you may enter the ANOVA situation with one or
more other hypotheses that are of greater substantive
interest.

o In that case, you may wish to perform other statistical
tests.

o In previous lectures, we examined the general issues
surrounding multiple hypothesis testing.

o We saw that there are several key problems that have to be
dealt with when you perform additional hypothesis tests.

e Key among them are (1) the proliferation of Type-I errors
when a significant number of tests are performed, and (2)
the problem of post hoc inference, i.e., the fact that the
probability model changes if you test a hypothesis after
examining the data.
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o We introduced the concepts of Familywise Error Rate
(FWER) and False Discovery Rate (FDR) as two ways of
assessing overall performance of a group of tests.
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Introduction

Alternative Hypotheses

o We introduced the concepts of Familywise Error Rate
(FWER) and False Discovery Rate (FDR) as two ways of
assessing overall performance of a group of tests.

@ In our ANOVA situation, we concentrate on methods that
control FWER for various families of tests that have
proven interesting in practice.

@ These procedures have been described succinctly in the
lecture slide handout A Catalog of Multiple Comparison
Procedures.
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o In this lecture, I review three of the most widely used
procedures.

@ These procedures are often the first three that are
discussed in introductory texts.

o We might well call them the “Big 3” of multiple

comparison testing for means.
@ These 3 procedures are
@ Planned Orthogonal Contrasts
@ The Scheffé test
© The Tukey test

James H. Steiger The “Big 3” Multiple Comparison Procedures



Planned Orthogonal Contrasts

Planned Orthogonal Contrasts

Linear Combination Tests

o Planned Orthogonal Contrasts are linear combination
hypotheses that represent experimental hypotheses. They
are of the general form,

Ho: U= cjuj=0 (2)
J

“Big 3” Multiple Co



Planned Ortho

Planned Orthogonal Contrasts

Linear Combination Tests

o Planned Orthogonal Contrasts are linear combination
hypotheses that represent experimental hypotheses. They
are of the general form,

Ho: U= cjuj=0 (2)
J

o We saw how to phrase a substantive hypothesis as a linear
combination of means in our earlier discussion of the
generalized t-statistic.

“Big 3” Multiple C



Planned Ortho

Planned Orthogonal Contrasts

Linear Combination Tests

Planned Orthogonal Contrasts are linear combination
hypotheses that represent experimental hypotheses. They
are of the general form,

Ho: U= cjuj=0 (2)
J

We saw how to phrase a substantive hypothesis as a lincar
combination of means in our earlier discussion of the
generalized t-statistic.

We also saw how to construct t-statistics to test such a

hypothesis.

“Big 3” Multiple C



Planned Ortho

Planned Orthogonal Contrasts

Linear Combination Tests

Planned Orthogonal Contrasts are linear combination
hypotheses that represent experimental hypotheses. They
are of the general form,

Ho: U= cjuj=0 (2)
J

We saw how to phrase a substantive hypothesis as a lincar
combination of means in our earlier discussion of the
generalized t-statistic.

We also saw how to construct t-statistics to test such a

hypothesis.
Planned Orthogogonal Contrasts are linear combinations
that have the following characteristics:

“Big 3” Multiple C



Planned Ortho

Planned Orthogonal Contrasts

Linear Combination Tests

Planned Orthogonal Contrasts are linear combination
hypotheses that represent experimental hypotheses. They
are of the general form,

Ho: U= cjuj=0 (2)
J

We saw how to phrase a substantive hypothesis as a lincar
combination of means in our earlier discussion of the
generalized t-statistic.

We also saw how to construct t-statistics to test such a

hypothesis.
Planned Orthogogonal Contrasts are linear combinations
that have the following characteristics:

@ They are planned, that is, are of interest prior to gathering
or examining the data.

“Big 3” Multiple C



Planned Ortho

Planned Orthogonal Contrasts

Linear Combination Tests

Planned Orthogonal Contrasts are linear combination
hypotheses that represent experimental hypotheses. They
are of the general form,

Ho: U= cjuj=0 (2)
J

We saw how to phrase a substantive hypothesis as a lincar
combination of means in our earlier discussion of the
generalized t-statistic.

We also saw how to construct t-statistics to test such a

hypothesis.
Planned Orthogogonal Contrasts are linear combinations
that have the following characteristics:

@ They are planned, that is, are of interest prior to gathering
or examining the data.
@ They are contrasts, that is, the linear weights sum to zero.

“Big 3” Multiple C



Planned Ortho

Planned Orthogonal Contrasts

Linear Combination Tests

Planned Orthogonal Contrasts are linear combination
hypotheses that represent experimental hypotheses. They
are of the general form,

Ho: U= cjuj=0 (2)
J

We saw how to phrase a substantive hypothesis as a lincar
combination of means in our earlier discussion of the
generalized t-statistic.

We also saw how to construct t-statistics to test such a

hypothesis.
Planned Orthogogonal Contrasts are linear combinations
that have the following characteristics:

@ They are planned, that is, are of interest prior to gathering
or examining the data.

@ They are contrasts, that is, the linear weights sum to zero.

@ If there is more than one planned contrast, they are
orthogonal to each other, that is, for contrasts
Uy = Z] cyjpj and Wy = 2] o, we have

Z C1jC25 = 0 (3>
J
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Planned Orthogonal Contrasts

An Example

e Suppose you are performing a social psychology experiment
examining the effects of violent movies on willingness to be
aggressive during an experimental test.

o Subjects are randomly divided into 4 groups. Groups 1, 2,
and 3 view violent movies, while Group 4 views a neutral
control movie.

@ Movies 1 and 2 involve sexually explicit violence, while
Movie 3 depicts violence of a non-sexual nature.

@ You realize before the experiment is ever performed that
the omnibus hypothesis concerning whether any of the
movies is different really doesn’t matter to you.

@ You are more interested in the following questions:

@ Is the average of the 3 violent movies the same as that of
the control movie?

@ Is the average of the two sexually explicit violent movies
different from the third violent movie?

o Let’s express these two experimental hypotheses as
contrasts and see if they satisfy the definition of orthogonal
contrasts

James H. Stei e “Big 3” Multiple Comparison Procedures



Planned Orthogonal Contrasts

Planned Orthogonal Contrasts

An Example

@ Our first hypothesis asks: Is the average of the 3 violent
movies the same as that of the control movie?
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@ Our first hypothesis asks: Is the average of the 3 violent
movies the same as that of the control movie?
o This might be written as

1
g(m + po 4 p3) = s (4)

or, equivalently
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@ Our first hypothesis asks: Is the average of the 3 violent
movies the same as that of the control movie?
o This might be written as

1
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Planned Orthogonal Contrasts

An Example

@ Our first hypothesis asks: Is the average of the 3 violent
movies the same as that of the control movie?
o This might be written as

1
g(m + po 4 p3) = s (4)

or, equivalently
o This might be written as

1 1 1
\IJ = — — — — =
1=gmtgpet oy —pa=0 (5)

@ Is the hypothesis a contrast?
@ Yes, it is, because the linear weights are 1/3,1/3,1/3, and
—1, and sum to zero.
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An Example

@ Our second hypothesis asks: Is the average of the two
sexually explicit violent movies different from the third
violent movie?
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@ Our second hypothesis asks: Is the average of the two
sexually explicit violent movies different from the third
violent movie?

@ This can be written as

1

1
Wy = iy 4 —pro — i3 = 0 6
2 2#14—2#2 M3 (6)
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An Example

@ Our second hypothesis asks: Is the average of the two
sexually explicit violent movies different from the third
violent movie?

@ This can be written as

1 1
Wy = s+ Spg—p3 =0 (6)
2 2
o Is Wy a contrast?
o Yes, it is, because the linear weights sum to zero.
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An Example

@ Our second hypothesis asks: Is the average of the two
sexually explicit violent movies different from the third
violent movie?

@ This can be written as

1 1
Uy =g+ ghe —p3=0 (6)

o Is Wy a contrast?

o Yes, it is, because the linear weights sum to zero.

e But are ¥; and ¥y orthogonal?
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An Example

®© 6 6 o

Our second hypothesis asks: Is the average of the two
sexually explicit violent movies different from the third
violent movie?

This can be written as

1 1
Wy = s+ Spg—p3 =0 (6)

2 2
Is Wy a contrast?
Yes, it is, because the linear weights sum to zero.
But are ¥; and Wg orthogonal?
To test whether they are orthogonal, we “line up” the
linear weights and see if their sum of cross-products is
equal to zero.
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An Example

@ The table summarizes the linear weights for the two

contrasts.

Contrast | p1 | p2 | p3 | p1a
TN
2 s 13 ]-1]0
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Planned Orthogonal Contrasts

An Example

@ The table summarizes the linear weights for the two

contrasts.

Contrast | p1 | p2 | p3 | p1a
TN
2 s 13 ]-1]0

o The two contrasts are orthogonal, since

D6 ()G - 1oi-)
0
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Planned Orthogonal Contrasts
Calculating the Test Statistic

o The test statistic for a Planned Orthogonal Contrast is
calculated the same way as the generalized ¢ statistic
discussed in the first weeks of the course. That is

a
= Z cjpj =0 ©]
j=1
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Planned Orthogonal Contrasts
Calculating the Test Statistic

o The test statistic for a Planned Orthogonal Contrast is
calculated the same way as the generalized ¢ statistic
discussed in the first weeks of the course. That is

a
v :Z“JNJ =0 ©]
j=1

a

=
25 | M

e In evaluating significance, if you are in fact testing more
than one planned orthogonal contrast, you can control
FWER by using either a Bonferroni or a Hochberg

procedure.
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Calculating the Test Statistic

o The test statistic for a Planned Orthogonal Contrast is
calculated the same way as the generalized ¢ statistic
discussed in the first weeks of the course. That is

a

v :Z“JNJ =0 ©]
j=1

a

>

J

25 | M

e In evaluating significance, if you are in fact testing more
than one planned orthogonal contrast, you can control
FWER by using either a Bonferroni or a Hochberg

procedure.

@ The Bonferroni procedure uses a critical value at the
FW ER/k significance level to control the FWER at the
desired level. This critical value can also be used to
construct a confidence interval on the linear combination W.

“Big 3” Multiple C



Planned Orthogonal Contra

Planned Orthogonal Contrasts
Calculating the Test Statistic

o The test statistic for a Planned Orthogonal Contrast is
calculated the same way as the generalized ¢ statistic
discussed in the first weeks of the course. That is

a

v :Z“JNJ =0 ©]
j=1

a

>

J

25 | M

e In evaluating significance, if you are in fact testing more
than one planned orthogonal contrast, you can control
FWER by using either a Bonferroni or a Hochberg
procedure.

The Bonferroni procedure uses a critical value at the

FW ER/k significance level to control the FWER at the
desired level. This critical value can also be used to
construct a confidence interval on the linear combination W.
The Hochberg procedure takes the two-sided p-values from
the t-statistic and subjects them to the Hochberg
sequential testing method discussed in the lecture notes on
Multiple Hypothesis Tests.
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The Scheffé Test

@ The Scheffé test is designed to control FWER at « for any
number of post hoc contrast tests after observing a
significant F’ statistic in the omnibus ANOVA hypothesis
test.
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The Scheffé Test

@ The Scheffé test is designed to control FWER at « for any
number of post hoc contrast tests after observing a
significant F’ statistic in the omnibus ANOVA hypothesis
test.

@ The method also allows simultaneous confidence intervals
to be constructed for the entire family of tests.
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The Scheffé Test

The Scheffé Test

@ The Scheffé test is designed to control FWER at « for any
number of post hoc contrast tests after observing a
significant F’ statistic in the omnibus ANOVA hypothesis
test.

@ The method also allows simultaneous confidence intervals
to be constructed for the entire family of tests.

o The tremendous flexibility and generality of the procedure
means that, in order to control FWER at «, it must be
rather conservative to provide the desired level of
protection.
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The Scheffé Test

@ One performs the Scheffé procedure exactly the same as
the generalized t procedure, either when constructing the
t-statistic for a hypothesis test or when constructing a
confidence interval on the linear combination V.
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The Scheffé Test

@ One performs the Scheffé procedure exactly the same as
the generalized t procedure, either when constructing the
t-statistic for a hypothesis test or when constructing a
confidence interval on the linear combination V.

@ For example, the test statistic for the procedure is
calculated using Equation 8. The only difference is that,
instead of using a critical value from the ¢ distribution, one
instead uses the following critical value.
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@ One performs the Scheffé procedure exactly the same as
the generalized t procedure, either when constructing the
t-statistic for a hypothesis test or when constructing a
confidence interval on the linear combination V.

@ For example, the test statistic for the procedure is
calculated using Equation 8. The only difference is that,
instead of using a critical value from the ¢ distribution, one
instead uses the following critical value.

o Let F™* be the critical value used for the ANOVA F-test,
ie.,

F* = Flfa,afl,n.fa
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The Scheffé Test

The Scheffé Test

@ One performs the Scheffé procedure exactly the same as
the generalized t procedure, either when constructing the
t-statistic for a hypothesis test or when constructing a
confidence interval on the linear combination V.

@ For example, the test statistic for the procedure is
calculated using Equation 8. The only difference is that,
instead of using a critical value from the ¢ distribution, one
instead uses the following critical value.

o Let F™* be the critical value used for the ANOVA F-test,
ie.,

F* = Flfa,afl,n.fa

@ Then the critical value used in the Scheffé test is

§=+(a-1F* 9)
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The Tukey Test

@ The Tukey procedure allows one to conduct all possible
pairwise comparisons between pairs of means, after looking
at the data, while controlling FWER at «.
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The Tukey Test

@ The Tukey procedure allows one to conduct all possible
pairwise comparisons between pairs of means, after looking
at the data, while controlling FWER at «.

@ One reason for the great popularity of the method is its
simplicity.
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The Tukey Test

The Tukey Test

@ The Tukey procedure allows one to conduct all possible
pairwise comparisons between pairs of means, after looking
at the data, while controlling FWER at «.

@ One reason for the great popularity of the method is its
simplicity.

o To perform the Tukey test, one calculates a single value
called the Honestly Significant Difference (HSD). If any
two means are farther apart than HSD, they are declared
statistically significant.
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The Tukey Test

The Tukey Test

o To calculate the HSD, one needs a critical value ¢* from
the Studentized Range Distribution.

@ The critical value ¢* can be calulated in R using the
function qtukey, and is

q* = ({1-a,a,ne—a (10)

@ The HSD value is calculated as

MS
HSD = ¢*) —2514 (11)
n

where n is the sample size per group.
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The Tukey Test

Simultaneous Confidence Intervals from the Tukey Test

o To construct confidence intervals on any pairwise mean
difference p; — pj, simply use the HSD as follows.

Xe;— Xej £ HSD (12)
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The Tukey Test

Displaying the Results of a Tukey Test

@ The results of a set of Tukey tests may displayed in a
variety of ways.

@ Some popular methods are the line plot and the letter plot,
along with various tabular presentations
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Planned Contrasts
heffe

o ; , .
Some Numerical Examples :

Some Artificial Data

@ You can load a small artificial data set with a = 4 groups
with n = 3 per group from the course website.
> data <- read.csv(
+  "http://www.statpower.net/Content/311/Lecture Notes/TukeyData.csv")
> data

group
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Some Artificial Data

o We can load the code for the generalized ¢ statistic as
follows:
> source(

+
+

"http://www.statpower.net/Content/311/Handout/GT2/GeneralizedTCode.r"
)

The header of the function shows the form for inputting
the data.
GeneralizedT<-function(means,sds,ns,wts,k0=0,CI=FALSE,conf=0.95,nul1=0){}

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

means => a vector of group means
example.. means <- c(1.12,3.51)
sds => a vector of corresponding standard deviations
ns => a vector of sample sizes
wts => a vector of linear weights to be applied
k0 => the constant that the linear combination is, by hypothesis, equal to
default value is 0
CI => set this equal to TRUE if you want a confidence interval
conf => the confidence level, by default 0.95 for a 95), interval
null => an indicator as to where the null hypothesis region is relative to kO
0 indicates equal to kO, i.e., a 2-sided test
-1 indicates that the null hypothesis is of the form HO: kappa <= kO
1 indicates that the null hypothesis is of the form HO: kappa >= kO
NOTE! Entering null incorrectly will result in the
p-value being reported incorrectly!

Note that, to operate, the function needs vectors of means,

sds, ns, and linear weights for the 4 groups.
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Calculating Summary Statistics

o Here is a simple function to calculate summary statistics:
> summary.stats <- function (x,group) {

means <- tapply(x, group, mean, na.rm=TRUE)

sds <- tapply(x,group, sd, na.rm = TRUE)

valid <- function (x) {return(sum(!is.na(x)) )}
ns <- tapply(x,group, valid )

output <- list(means = means, sds=sds, ns=ns)
return(output)

}

output <- summary.stats(data$x,data$group)
means <- output$means

sds <- output$sds

ns <- output$ns

means
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Planned Contrasts

o We recall from a previous slide that we have two planned
orthogonal contrasts.
e Let’s compute the ¢ statistics. The contrasts were defined
by
> wts.1 <- ¢(1/3,1/3,1/3,-1)
> wts.2 <- ¢(1/2,1/2,-1,0)
o The t values are
> t.1 <- GeneralizedT(means,sds,ns,wts.1)
> t.2 <- GeneralizedT (means,sds,ns,wts.2)
> t.1
[1] -5.2500000000 8.0000000000 0.0007738347
> t.2
[1] -6.3639610307 8.0000000000 0.0002173371

o With a Bonferroni correction, and FWER rate of 0.05, each
test is performed at the 0.025 significance levels. Both ¢
statistics have p-values way below this significant level, so
both hypotheses are rejected.

Multiple Comp on Procedures
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The Scheffé Test

o Imagine now that the two contrast hypotheses that we
tested in the preceding section were actually only thought
of after the experimenter examined the data.

o In this case, the Scheffé test procedure and will control
FWER at the « level.

o We need to compute the S critical value. Since there are 4
groups with n = 3 observations per group, our degrees of
freedom for the F-test are 3 and 8.

@ The Scheffé critical value may then be computed as
> a<-4
>n <- 3
> dfl <-a -1

> df2 <- a * (n - 1)

> F.crit <- qf(0.95, df1, df2)

> S <= sqrt((a-1)*F.crit)

> S

[1] 3.492641

Both t statistics exceed this critical value by a wide
margin, and so these orthogonal contrast hypotheses can
be rejected even when performed post hoc.

James H. Stei “Big 3” Multiple Comparison Procedures
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The Tukey Test

o Suppose we wished to perform all possible pairwise
comparisons among the 4 means.

o There are a number of ways to do this in R.

o The first approach uses the HST. test in the agricolae

library to perform the calculations.

> library(agricolae)

> data$group <- factor(data$group)
> fit <- aov(x ~ group, data=data)
> HSD.test (fit,"group", group=TRUE)
Study:

HSD Test for x
Mean Square Error: 1

group, means

x std.err r Min. Max.
12.0 0.5773503 3 1.0 3.0
2 5.0 0.5773503 3 4.0 6.0
38.0 0.5773503 3 7.0 9.0
4 8.5 0.5773503 3 7.5 9.5

alpha: 0.05 ; Df Error: 8
Critical Value of Studentized Range: 4.52881

Honestly Significant Difference: 2.614709
Means with the same letter are not significantly different.

Groups, Treatments and means
a 4 8.5

a 3 8
b 2 5
c 1 2
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The Tukey Test

Note that besides containing the HSD, the table displays
the results of the Tukey test on the ordered means by
means of a letter plot on the ordered groups.

The two groups with the largest means, groups 4 and 3, are
not significantly different, and they both have the letter
“a” next to them.

@ On the other hand, groups 2 and 1 have different letters.
This indicates that these groups are significantly different
from groups 4 and 3, and significantly different from each
other.

The HSD value given in the output agrees with our
calculation in R.

> MS.S.A <- 1.0
> a<-4
>n <-3

> dfl <- a
>

>

>

df2 <- a *x (n - 1)
HSD <- qtukey(0.95,df1,df2) * sqrt(MS.S.A / n)
HSD

[1] 2.614709

James H. Stei “Big 3” Multiple Comparison Procedures
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The Tukey Test

o An alternative approach, called the line plot, draws lines
either under or alongside the list of means, with each solid
line corresponding to a letter in the letter plot.

e That approach was demonstrated in class.

on Procedures
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The Tukey Test

o Still another approach uses the TukeyHSD function, which
displays the mean differences pairwise, along with a
confidence interval on the mean difference and an
“adjusted p-value,” which is less than 0.05 if the result is
significant with FIW ER set at 0.05.
> TukeyHSD(fit)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = x ~ group, data = data)

$group

diff lwr upr p adj
2-1 3.0 0.3852905 5.614709 0.0259193
3-1 6.0 3.3852905 8.614709 0.0003667
4-1 6.5 3.8852905 9.114709 0.0002084
3-2 3.0 0.3852905 5.614709 0.0259193
4-2 3.5 0.8852905 6.114709 0.0113928
4-3 0.5 -2.1147095 3.114709 0.9252929

James H. Stei e “Big 3” Multiple Comparison Procedures
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